Dimensionality Reduction with Random Projection and Distance Space for Video Similarity Measurement: Application with Sports Video Classification
نویسندگان
چکیده
This paper proposes the video similarity measurement approach for sports video classification by dimensionality reduction with random projection (RP) and distance space. Most video data are huge files, which vary in terms of length and amount of data, resulting in time-consuming data processing; therefore, reducing the dimensionality of the data becomes a necessity. All frames of training videos are extracted by color histogram based method. After that, all features of videos are projected onto a lowdimensional subspace by RP for reducing the dimensionality of the data. Afterwards, the clustering technique is performed to provide the centroids of each cluster, called reference vectors. Distance from each reference vector in database to the observation sequence is distance space which is the new feature space. Finally, videos will be classified by term weighting and the nearest neighbor classifier. Accordingly, the proposed approach helps enhance feature dimension reduction, resulting in faster data processing. The experimental results show that the proposed approach outperforms the other approaches significantly in sports video similarity measurement.
منابع مشابه
2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملDimensionality Reduction for Distance Based Video Clustering
Clustering of video sequences is essential in order to perform video summarization. Because of the high spatial and temporal dimensions of the video data, dimensionality reduction becomes imperative before performing Euclidean distance based clustering. In this paper, we present non-adaptive dimensionality reduction approaches using random projections on the video data. Assuming the data to be ...
متن کاملشناسایی چهره در رشتههای ویدیویی با استفاده از افکنش متعامد با حفظ ساختار محلی
In this paper, attempting to improve the recognition rate and solve some problems such as pose, lighting variations and partial occlusion in video sequences using Orthogonal Locality Preserving Projection (OLPP). In this research, first of all face in video frames is detected for background removing. Then each set of images is distributed on a nonlinear manifold and clustered using appropriate ...
متن کاملEmbedded Map Projection for Dimensionality Reduction-Based Similarity Search
We describe a dimensionality reduction method based on data point projection in an output space obtained by embedding the Growing Hierarchical Self Organizing Maps (GHSOM) computed from a training data-set. The dimensionality reduction is used in a similarity search framework whose aim is to efficiently retrieve similar objects on the basis of the Euclidean distance among high dimensional featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011